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Abstract—This study identifies the most basic scales and regimes of the phenomenon of melting with
natural convection in an enclosure heated from the side. In the first part of the study the method of scale
analysis is used to show that the phenomenon consists of a sequence of four regimes: (a) the pure
conduction regime, (b) the mixed regime in which the upper portion of the liquid gap is ruled by convection
and the lower portion by conduction, (c) the convection regime and, finally, (d) the last or ‘shrinking solid’
regime. For the first three regimes the scaling theory predicts a Nusselt number vs time curve that has
features similar to a van der Waals isotherm, in particular, a clear Nu minimum of order Ra'/* at a time
Ste Fo of order Ra~ 2, where Ste is the liquid superheat Stefan number and Fo the Fourier number based
on H. The corresponding average melting front position has an inflexion point at a time of order Ra™ Yz,
The theory shows further that during the fourth regime the solid disappears during a Ste Fo time interval
of order Ra~"* The second part of the study consists of numerical experiments the purpose of which is
to verify the correctness of the theory constructed in the first part. The numerical simulations are based
on the quasi-stationary front approximation and the quasi-steady natural convection assumption. The
parametric domain covered by these simulations is 0 < Ra < 10%,0 < SteFo < 0.2, Pr=50and H/L =1,
where L is the horizontal dimension of the enclosure and Ra the Rayleigh number based on H. Closed
form correlations for both Nu and the melting front location time functions are developed by combining
the theoretical and numerical conclusions of the study.

OBJECTIVE

THE PROGRESS on natural convection dominated
phase-change heat transfer was reviewed most
recently by Viskanta [1, 2]. To the newcomer these
reviews unveil a field that is already voluminous,
established and blessed with a long string of important
engineering applications. Yet, one general conclusion
that emerges from these reviews is that natural con-
vection and phase-change phenomena are quite com-
plicated, to the point that “no unified theoretical treat-
ment ... is within our grasp” (p. 846 of Viskanta [2]).
The complications stem primarily from the strong
coupling between the natural circulation of the liquid
phase and the melting rate of the solid. It is this
coupling that determines the instantaneous shape of
the liquid-solid interface, which becomes one of the
key unknowns in each problem.

In natural convection melting of a solid heated from
the side the liquid-solid interface changes its shape
and position continually (Fig. 1). The variation of the
geometry of the system is chiefly responsible for the
peculiar character of the heat transfer measurements
that have been reported. The common features of
these measurements are revealed also by the present
numerical Nusselt number calculations, which are
illustrated in Figs. § and 8. In time, the overall Nusselt
number describes a wavy curve with features similar
to those of a van der Waals isotherm. These features
have proven to be very puzzling, because so far it has
been impossible to correlate the wavy Nusselt number

curves in terms of the dimensionless parameters sug-
gested by routine dimensional analysis.

The most comprehensive and focused effort of con-
structing a unifying correlation for heat transfer and
melting rates in cavities heated from the side was
reported by Webb and Viskanta [3]. These authors
tried several correlation methods, using either the
height of the enclosure (H) or the average thickness
of the liquid zone (s,,) as the characteristic length
scale. They showed that the classical methods fail to
correlate adequately the heat transfer results over the
entire time domain. Attributing this failure to the
probable use of incorrect length scales, Webb and
Viskanta [3] concluded with the following :

“Caution is therefore advised when using cor-
relations in the literature for design purposes or as
quantitative comparisons with independent inves-
tigators. The proper characteristic length in mel-
ting/solidification needs more research attention.”

These final words sum up the motivation for under-
taking the present study. Its objective is (1) to identify
the correct scales of the phenomenon and (2) to use
these scales in order to construct a heat transfer cor-
relation that covers successfully the entire time
domain.

SCALE ANALYSIS

The key to the correct correlation of seemingly com-
plicated trends such as those of convection melting is
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¢y, ¢, empirical constants, equations (37)

¢y, ¢5, empirical constants, equations (64)
and (65)

C constant for Neumann’s solution,
equation (8)

C, empirical constant, equation (33)

Fo Fourier number, equation (4)

g gravitational acceleration

h height of solid region

h latent heat of fusion

H height of enclosure

k liquid thermal conductivity

[ horizontal dimension of solid
region

L horizontal dimension of enclosure

m empirical constant, equation (40)

n empirical constant, equation (37)

Nu Nusselt number, equation {(5)

Ny, minimum Nusselt number,
equation (23)

Pr Prandtl number

o total heat transfer rate

Q. convective heat transfer rate

Ra Rayleigh number based on H,
9B(T—T)H ()

Ra,  Rayleigh number based on A,
qB(Tw - Ts)h3/(av)
Ra, Rayleigh number based on /,

9B(T—T) (av)
melting front position

Sae average melting front position,
equation (26)

Stop melting front position measured along
the top wall
S dimensionless melting front position,

siH

NOMENCLATURE

A dimensionless average melting front
position, s,,/H

Ste lquid superheat Stefan number,
equation (4)

t time

T temperature

T, interface (melting) temperature

T, warm wall temperature

u horizontal velocity

vertical velocity

horizontal coordinate

vertical coordinate

height of the convection dominated
liquid region.

~

LR

Greek symbols

% thermal diffusivity

i) coefficient of volumetric thermal
expansion

d, thermal boundary layer thickness in
convection zone of height z

0 dimensionless time, equation (3)

a9, time of end of conduction, equation (33)

a, time marking the end of the mixed

regime, equation (22

0, time when the top wall is bathed fully by
liquid, equation (29)

a, time when the solid disappears

Onin  time when Nu reaches its minimum
value, equation (24)

¥ kinematic viscosity

g transformed horizontal coordinate,
cquation (41)

p density

W streamfunction

v dimensionless streamfunction, /v,

the identification of the proper scales of the phenom-
enon. Consider the time-dependent melting of an
energy storage phase-change material in a vertical
rectangular enclosure heated from the side (Fig. 1).
Initially, the H x L enclosure is filled entirely by the
solid phase, the initial temperature 7, of which is
uniform. For simplicity we assume also that 7 is the
same as the fusion temperature of the material, in
other words, we assume that the degree of solid sub-
cooling is zero. Beginning with the time ¢ = 0, the left
wall of the enclosure is heated and maintained at
a constant temperature level T,. This heating effect
causes both melting at the liquid-solid interface and
natural convection in the region carved out for itself
by the liquid phase.

The other assumptions on which this study is based
are: (i} the liquid flow is laminar and two-dimen-
sional, (ii) the density difference between the liquid

and solid phases is negligible, (iii) the liquid has a
Prandtl number greater than one, and (iv) the prop-
erties are all constant, with the exception of the linear
density—temperature relation assumed in the buoy-
ancy term of the momentum equation (the Boussinesq
approximation).

The conduction limit

It is well understood that immediately after 1 =0
the melting process is ruled by pure conduction [1-3].
The horizontal heat flux across the incipient vertical
liquid film is balanced entirely by the enthalpy
absorbed at the liquid-solid interface (see the
Nomenclature)

~ phy . )
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Fquation (1) shows that from the beginning the liquid
layer thickness is a function of time

— Ty -
g~ {Eg}m,‘_}] ~ HE )
pksf
where 0 is the dimensionless time
AT, —T,) at
& s The HY (3)

According to the usual terminology of phase-change
heat transfer, the dimensionless time 6 is the same
as the product of the Stefan and Fourier numbers,
O = Ste Fo, where Ste measures the degree of liquid
superheat and Fo the time of thermal diffusion across
the distance H

_ oI, -1 ot

Ste hsr , Fo = E:iiﬁ

@

The Nusselt number that corresponds to this pure
conduction limit is
H

Q -3
M=ty s ©
where Q is the total heat transfer rate through the left
wall of the enclosure, per unit length in the direction
normal to the plane of Fig. 1{a).

The preceding results do not add anything to what

we know already from Neumann’s exact solution 4]
L = 2CFo"? 6)
H

Nu = [erf (C)]'a=V? Fo~ 12 o)

where C is an impHcit function of the Stefan number

erf (C)
exp (—C2)

The purpose of the scale analysis represented by equa-
tions {I}—{5) is to show that its predictions agree
within a factor of order one with the results of the
corresponding exact solution (for more on this see pp.
17-21 of ref. [5]). Note that in the Ste — 0 limit the
exact solution, equations (6)—(8), reduces to

Ste = n'*C (8)

-‘?«Y = Nu=(20)"1? 9}
that is, to results that agree within a factor of order
one with equation (2),

Before abandoning the pure conduction limit, it is
worth noting that an infinitesimally small convection
heat transfer effect is present even in the imit # - 0.
Consider the slender vertical cavity of height H and
thickness s, the liquid content of which is exposed to
the horizontal temperature difference (T, —T,).
Assuming that the coefficient of volumetric thermal
expansion of the liquid {§) is positive, the liquid will
circulate clockwise in a very slender ‘cell” of size H x 5.
The vertical velocity scale of this very slender coun-
terflow, o, is determined by the balance between the
vertical buoyancy effect gf(T,,— 7,) and the vertical
friction effect in a gap of thickness s (namely, vo/s?).
The resulting velocity scale is

7.7,
o~ FBC . )

(10)

in which s(¢) is given by equation (2).
The convective heat transfer rate carried upward by
this counterflow is

Q. ~ (pso)e(T — 1) (an
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in which (psv) represents the vertical mass flow rate
of one branch. The weak convective heat current Q.
originates from the bottom end of the hot wall, flows
vertically through the s-wide gap and, ultimately, is
absorbed by the top end of the cold wall (in our case,
by the top end of the liquid—solid interface). The total
heat transfer rate in the horizontal direction, that
is, through the H-tall liquid gap, is the sum of the
conduction and convection contributions

T,—T,

O ~kH-" + Q.. (12)

T
Noting the Nusselt number definition (5), this Q esti-
mate translates into

Nu~0-"+Raf>> (0 0). (13)

The convection contribution (Ra 6 *?) participates in
the sum (13) with a numerical coefficient of order one,
which is not shown. The important conclusion is that
relative to the dominant effect of pure conduction
(0~ "%y the convective contribution increases with
time.

The mixed conduction plus convection regime

The deformation of the rectangular shape of the
liquid zone is from the beginning the result of the
convective heat transfer contribution Q.. In order to
see this consider again the 0 — 0 limit, which geometri-
cally translates into the infinitely slender enclosure
limit, H/s — co. In this geometric limit the flow field
consists of a slender counterflow of height H ter-
minated by two end regions the height of which is of
the same order as the transversal dimension of the
counterflow [6, 7]. Let s,,, be the length scale of the
enlarged top end region (Fig. 1(a)). The top portion
of the liquid-solid interface melts faster on account
of Q., which must ‘sink’ into the top end region.
Writing that the melting rate of the s,,,-tall portion of
the interface is ruled by Q. plus the conduction heat
transfer collected over the height s,,,

Tw - Ts

kStop 75[’0p -+ Qc ~ Siop phsf ‘a? (14)
using equations (10) and (11) we obtain
Siop ~ H(O+Ra0>?)"* (0 —0) (15)
in other words
" (1 Rag¥?)
~ 14+ 0(Ra8¥*) (6-0). (16)

This result shows that from the beginning the top
portion of the liquid-solid interface recedes faster
than the remainder of the interface. It is known that
if the horizontal dimension of a rectangular enclosure
(with fixed Ra) increases monotonically, the con-
duction heat transfer regime gives way eventually to
the convection regime, in which both sides of the
enclosure are lined by distinct thermal boundary lay-
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ers (see, e.g. p. 166 of ref. [5]). Equation (16) shows
that the convection regime will set in starting from the
top of the liquid space.

Let the unknown vertical dimension z be the height
of the upper region that has become wide enough to
be ruled by convection. The heat transfer across the
remainder of the liquid space (height = H—:, Fig.
1(b)) continues to be ruled by conduction. Now. con-
vection in the upper zone means that the thermal
boundary layer thickness in this zone, J., is smaller
than the horizontal dimension of the carved-out upper
zone. The convective zone expires at its lower
extremity, where 6. is of the same order as the gap
thickness of the lower (conduction) zone

d. ~ s, at the convection—conduction transition level.
(17

In equation (17) we have the means for estimating the
height of the convection-dominated region, z. Since
the liquid has a Prandtl number greater than one, we
have

6. ~zRa " (18)

where Ra._ is the Rayleigh number based on z, namely
Ra, = gBz*(T,,—~T,){(av) or Ra, = (z/H)* Ra. Com-
bining equations (17) and (18) with equation (2) for
the conduction gap s, yields

z~ HRab?. (19)

In conclusion, the convection zone expands down-
ward as the time increases. The expansion is faster
at higher Rayleigh numbers. Note further that this
expansion phenomenon meshes very well with the
growth of the square-end top region of the conduction
limit, equation (16) and Fig. 1(a). Also worth noting
is the relation z/s ~ Ra 0>,

Regarding the total heat transfer rate through the
heated wall, Q, we note that the heat transfer mech-
anism is convection over the height z and conduction
over (H—z). The total heat transfer rate is therefore
the sum

T,—T, T,—T,
Q ~kz S k(H =)=

which, in view of equations (2), (5), (18) and (19)
translates into

(20)

Nu~ 80"+ Raf*> 2n

As expected, the Nusselt number is made up of two
contributions, one due to conduction and the other
to convection. One rewarding feature of equation (21)
is that it meshes perfectly with the scaling law that
holds in the 0 — 0 limit, equation (13). This time,
however, the convection contribution (Ra 6*?) is not
necessarily negligible when compared with the con-
duction contribution (8~ '/?).

In conclusion, the heat transfer scaling law (21)
holds starting with € = 0 until the assumed convection
zone (height z) extends all the way to the bottom of
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the liquid space, that is, until z ~ H. If we label 6, the
time scale that corresponds to z ~ H, equation (19)
suggests that the mixed conduction plus convection
regime ends at a time of order

0, ~ Ra~2. (22)

In the time interval (0,0,) in which it is valid, the
Nusselt number scaling law (21) distinguishes itself
through the analytical prediction of an Nu minimum
of order

Nty ~ Ra'* (23)
which occurs at a time of order
Orin ~ Ra™'? (24)

i.e. at the end of the mixed heat transfer regime,
Ooin~ 0,. These scales follow from applying
dNu/08 = 0 to equation (21).

The convection regime

At times greater than 8, the convection-dominated
zone fills the entire liquid space of height H. Distinct
boundary layers line both the (7,,) wall and the (7)
phase-change interface (Fig. 1(c)). Since Pr > 1, the
overall Nusselt number scale is

Nu ~ Ra'l*. (25)

This scaling law holds even though the phase-change
interface is deformed and continues to deviate from
the vertical plane shape. It is known that the boun-
dary-layer convection scaling law (25) works very well
also for curved surfaces, provided Ra is based on a
length scale of the same order as the vertical dimension
of the surface [8].

The heat transfer rate (25) is related to the speed
with which the melting front advances to the right,
ds/dt. Since in the convection regime the melting front
is always deformed, s(y, ¢), it is more appropriate to
argue in terms of the height-averaged melting front
location

1 H
Sav(t) = Ej‘ S(y’ t) dy' (26)
0

Writing that the total heat transfer rate Q is used for
the purpose of displacing the melting front to the right
dsav

Q ~ phyeH ar 27

and noting that equation (25) means Q ~ Ra'*k

x (T, —T,), we arrive at the scaling law for the con-
vection-driven interface.

Say ~ HRa'*0. 2%

In a system of finite horizontal extent, L, the scen-
ario concluded with equations (25) and (28) holds
until the liquid-solid interface reaches the right wall,
S, ~ L. Let 6, represent the time scale associated with
this event. Equation (28) yields immediately

1225

L
By~ FfRa— e, 29)
The convetction regime exists only if 8, > 6, that is,
if
H
14
Ra'’* > IR

(30)
When this criterion is not satisfied (i.e. when 8, < ;)
the mixed conduction plus convection regime of Fig.
1(b) ends at a time of order §,, that is, before the
Nu(#) curve has had time to reveal its minimum. That
criterion (30) and the Nu minimum are threatened as
Ra decreases is clearly illustrated by the numerical
Nu(f) curves plotted in Figs. 5 and 8. Worth noting
also is that equations (29) and (30) and, for that
matter, all the other convection scales described in
this paper are valid provided the Rayleigh number is
small enough to prevent the transition to turbulent
natural convection boundary layer flow. Criteria for
predicting the transition Rayleigh number are
reviewed in ref. [9].

What happens after the melting front reaches the
right wall, 8 > 8,, constitutes a distinct heat transfer
regime the main features of which are sketched in Fig.
1(d). For a better balance between scaling theory and
numerical experiment, we postponed the discussion
of this last regime until we had a chance to test numeri-
cally the validity of the predictions made up till now.

NUMERICAL VERIFICATION OF THE SCALING
RESULTS

In parallel with the theoretical consideration of the
phenomenon of natural convection melting in an
enclosed space, we conducted a series of numerical
simulations of the Ra range 0-10° in a square box
and at a Stefan number of order 0.1. The numerical
formulation of the problem is standard, therefore,
we make no claim concerning its originality. In the
interest of succinctness we say only that the numerical
procedure was based additionally on the so-called
quasi-steady natural convection approximation [10].
The numerical results developed in this way are valid
in the limit of negligible liquid thermal inertia, namely,
Ste - 0. The details of the numerical formulation and
procedure are stored in ref. [11].

One test of the numerical solutions consisted of
comparing the calculated average melting front
location

H

So(0) = J; S0, 7)dY (3D
with experimental and numerical results reported by
other investigators. For this reason the Prandtl num-
ber was fixed at Pr = 50, which is representative of
the Pr range of n-octadecane {12]. The actual value of
Pris not crucial in the testing of the preceding scaling
theory, provided Pr > O(1).
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Fi1G. 2. Comparison between numerical results and experimental measurements: A, Ste = 0.09, Ra = 10*
[10): O, Ste = 0.09, Ra = 10° [13]; +, Ste = 0.1, Ra = (8.9)107 [15]; — - —, Ste = 0.2, Ra = 10%[14].

Figure 2 shows the results of this comparison in the
case of a high Rayleigh number (Ra = 10°) and in the
relatively short-time interval 0 < § < 0.006 in which
the heat transfer mechanism had had enough time to
pass through the conduction, mixed and convection
regimes (Figs. 1(a)—(c)). The present results fall right
on top of the numerical results of Kassinos and Prusa
[13]. Both sets of results fall slightly below Gadgil and
Gobin’s [14] calculations, which is understandable in
view of the fact that in Gadgil and Gobin’s study the
top surface of the liquid pool was modeled as free
(zero shear), in contrast to the no-slip condition used
here. The same figure shows that the experimental
results published by Ho and Viskanta [10] and Bareiss
and Beer [15] fall below the present calculations, some
of them falling below even the pure conduction solu-
tion Ra = 0. Not shown in this figure are Ho and
Viskanta’s numerical results for the same case, which
also fall below the present results (the solid line) as
well as those of Kassinos and Prusa [13].

In Fig. 3 the present results are compared with those
of Okada [16] at a lower Rayleigh number and over
a much longer time interval, 0 < € < 0.045. The inter-
esting fact here is that the slopes of the numerical and
experimental curves for Ra = (5.34)10° are nearly the
same. It is possible that the true starting point of
Okada’s curve (the crosses) is somewhere between our
6 = 0 and 0.005, because any enclosure-type appar-
atus has a ‘time constant’ that separates the moment
when the heating effect is applied to the wall from the
moment when the contents of the enclosure begin to
experience this heating effect. Worth noting is that if
Okada’s curve is shifted enough to the left so that it
becomes, as it should be, tangent to the pure con-
duction solution Ra =0, then the numerical and
experimental curves agree very well.

The numerical results that are most relevant from
a heat transfer engineering standpoint are the evol-

ution of the average melting front location (Fig. 4),
and the Nusselt number averaged over the heated
vertical wall (Fig. S). In all the runs the aspect ratio
of the enclosure was held fixed at H/L =1. The
description of the numerical solutions for the flow
pattern in the liquid zone is omitted for the sake of
conciseness : these patterns differ little from what was
revealed by experiments [10, 12-16} and by Okada’s
extensive study [17].

The family of five S,,(6) curves of Fig. 4 shows the
manner in which the liquid zone expands into the
solid as the time increases. Especially at high Rayleigh
numbers, each curve is roughly a straight line with a
slight undulation : this and the orientation (slope) of
the curve are anticipated by the scale analysis of the
first three heat transfer regimes. One important point
along each S,,(0) curve is the point marked with a
filled circle: this point corresponds to the time when
the uppermost section of the liquid-solid interface
first touches the vertical adiabatic boundary of the
system. For reasons that are explained in the next
paragraph and Fig. 5, we label this special time 0,
and recognize that according to equation (29) 0,,..
must be of the same order of magnitude as 0,. The
second row of points in Fig. 6 shows that indeed the
ratio fy,../0, is of the order of one.

Figure 5 shows how the Rayleigh number affects
the shape and position of the Nusselt number vs time
curve. Although defined in the beginning of equation
(5), the numerical solution version of the definition of

Nuis
: 5T*)
- (= av.
L(OX veo

Each Nu(f) curve has the features anticipated in the
scale analysis section, first, the pure conduction decay
of order 0~ /2, followed by the mixed regime with its

Nu = (32)
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FiG. 4. Numerical solutions for the average melting front location, as a function of time and Rayleigh
number.

Nu minimum and, finally, the pure convection Nu
plateau of order Ra'“*. The Nusselt number curve
changes slope as it passes through the ‘knee’ point
where the melting front first touches the right-hand
side adiabatic boundary. The time associated with this
event is 0,,... At times greater than 0,,.. the Nusselt
number decreases relatively fast and almost linearly
in time, as described in the section on the fourth
(shrinking solid) regime.

Figure 6 tests the correctness of some of the scaling
laws developed in the theoretical part of this study.
The first row of points shows that the time of the
Nusselt number minimum, 6., is indeed of the order
of 8,, as anticipated in equations (22) and (24). It is
interesting to note that the 6, scale agrees very well
with what Bénard et al. [18] called the time of ‘end

of conduction’. For the end-of-conduction time scale
Bénard et al. reported an empirical correlation, which
in the present notation reads

0, = 4.59Ra" "2 (33)

They estimated the 6, values for this correlation by
intersecting the horizontal pure-convection plateau of
each Nusselt number curve (Fig. 5) with the pure-
conduction asymptote (9) shared by all these curves.
Since, according to Fig. 6, our 6, scale is approxi-
mately 9Ra~ V?, we conclude that Bénard et al.’s end-
of-conduction time scale is equal to half of the 0,
scale.

Continuing with the reading of Fig. 6, we see that
the third row of points uses the knee-point Nusselt
number (N, ) to show that in the pure convection
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limit the Nusselt number scales as Ra"*, equation

(25). Furthermore, the last row in Fig. 6 shows that
Nu,,;, scales as Ra'*, as anticipated in equation (23).

An overall test of the correctness of the fluid mech-
anics scaling results has been constructed in Fig. 7.
This figure shows the calculated streamfunction
maximum, ¥, as a dimensionless measure of the
flow rate of the liquid circulation. The figure was
constructed knowing first that in the pure conduction
limit ¥ ~ vs, where 5 and v are given by equations (2)
and (10). In the dimensionless ¥ notation shown in
the Nomenclature this means

Ra . .
o ?}5;83"2 (conduction). 34

On the other hand, in the pure convection limit

¥ ~ vd, where v ~ (a/HyRa"" and 6 ~ Pr' H Ra'"*
(p. 120 of ref. [3], the case Pr > 1), therefore

¥ ~ Pro'* Ra"* (35)

Intersecting equations (34) and (35) we learn that the
‘knee” of each ¥ vs 6 curve is located at § ~ Ra™'*
Recalling that Pr has been held fixed, these equations
imply that all the W (0, Ra) curves should collapse onto
a single curve if plotted as ¥/Ra"* vs 0 Ra"?. Figure
7 shows that this is indeed the case and that the knee
of this correlating curve is located in the domain where
the abscissa parameter § Ra'/? is of the order of one.

(convection).

HEAT TRANSFER CORRELATION

The Nusselt number and time scales tested in Figs.
4-6 provide the necessary backbone on which to con-
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struct a heat transfer correlation that spans the con-
duction, mixed and convection regimes. In the con-
duction regime (# « #,) the Nusselt number must
approach the asymptote (26)~ '/*, equation (9). In the
mixed conduction plus convection regime (8 ~ §,) the
Nu(0) passes through a minimum of order Ra'*. In
the pure convection regime (8, < 8 < 8,) the Nusselt
number is time independent and of order Ra'/*. These
three types of Nu vs 6 behavior are explicitly evident
in the single correlation

Nu = (20) "*+[c, Ra"*
—(20)" V)[1+(c, Ra¥* 0¥, (36)

The second pair of square brackets on the right-
hand side of this correlation contains a canonical
expression of the type recommended by Churchill
[19]. That equation (36) reproduces the analytical
asymptotes of the three heat transfer regimes (equa-
tions (9), (21) and (25)) can be seen while keeping in
mind that » is an empirical exponent the value of
which must be negative. For example, at large ’s the
second pair of square brackets approaches the value
1, therefore equation (36) approaches the pure con-
vection scaling law Nu = ¢, Ra"/*. This limit allows us
to evaluate ¢, as the ratio Nu/Ra'* associated with
the knee points of the curves of Fig. 5, that is, with the
most distant states of pure convection. The average
Nuy,../Ra"* value displayed already in Fig. 6 is 0.35.
The remaining constants, ¢, and n, were evaluated
empirically by fitting equation (36) to the Nusselt
number minima of the Nu(#) curves. In summary, the
three constants that allow the three-regime correlation
(36) to cover the time domain 0 < 0 < 6, are

¢; =035 ¢, =0.0175, 37

The smooth lines plotted in Fig. 8 show that the
correlation, equations (36) and (37), summarizes very

n= —2.

well the Nusselt number numerical results developed
for the entire Ra range 0-10%. One remarkable feature
of this correlation is that in the § < 8, range the Nus-
selt number does not depend on the geometric aspect
ratio H/L. On the one hand, this feature should be
expected since at times # smaller than #, the natural
circulation in the liquid zone is unaware of L as a
horizontal length scale. On the other hand, it is well
known that in pure natural convection in rectangular
enclosures (without melting) the aspect ratio of the
fluid space plays an additional albeit minor effect on
the convection scaling law assumed in equation (25)
[20]. With respect to the instantaneous geometry of
the liquid zone in the convection dominated regime
of the present problem (height H, horizontal thickness
5,,) the more complete heat transfer scaling law to
consider in place of equation (25) is (ref. [20}; also p.
173 of ref. [5])

Nu H\Y

where function f has a dimensionless value of the
order of 0.3. Worth noting is that f decreases slightly
as the time increases and the average aspect ratio H/s,,
decreases. This effect has been neglected in the theory
that led to correlation (36), and this is why that cor-
relation is independent of an ‘aspect ratio’ until
8 “~ 82.

(38)

CORRELATION FOR THE AVERAGE MELTING
FRONT LOCATION

The S,,(8) curves of Fig. 4 could be correlated
similarly, by recognizing the scaling—correct analytical
form of the S,,(8) function in each of the three heat
transfer regimes that precede the knee point, § ~ 8,.
It turns out that the same job is done even better by a
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FiG. 8. The match between the heat transfer correlation, equations (36) and (37), and the numerical Nu
results of Fig. 5.

simpler correlation based on only the pure conduction
and pure convection asymptotes

Sur = {120) 21" +[c, Ra" 0"} . (39)

We see here again the canonical form recommended
by Churchill [19] and, quite clearly, the asymptotic
forms of the S,,(6) function. The empirical constants
that allow equation (39) to summarize best the 8 < 6,
information of Fig. 4 are

¢y =035 and m=>35 (40)

where ¢, is the same as in the preceding Nu correlation.
Figure 9 shows that the average melting front location
correlation (39) fits the numerical results very well.

THE FOURTH (SHRINKING SOLID) REGIME

We turn our attention now to the fourth regime
sketched in Fig. 1(d), in which the remaining solid
shrinks as its uppermost point (¥ = k) descends along
the right-hand wall. The liquid circulation is always
in the convection regime, however, the heat transfer
and melting rates depend on the size of the remanent
solid.

In order to determine the scales of this last regime
it is necessary to make an assumption concerning the
shape of the solid region. Let us assume first that early
enough in this regime the cross-section of the solid is
roughly a triangle the hypotenuse of which pivots
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FiG. 9. The match between the S,, correlation, equations (39) and (40), and the numerical results of
Fig. 4.
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FiG. 10. Three assumptions concerning the shape of the solid region during the fourth regime (Fig. 1(d)).

about the bottom end of the liquid-solid interface
(Fig. 10(a)). In other words, the solid cross-section
scales as the product /A, in which [ is fixed. The heat
transfer rate across the liquid space is impeded by two
thermal resistances in series, the thermal boundary
layer resistance along the heated wall (of order
Ra="*) and the corresponding resistance along the
liquid—solid interface, which is of order Ra; '/*; since
Ra; Y'* > Ra~ Y4, itis the interface resistance that con-
trols the heat transfer rate that melts the solid. The
energy balance at the moving interface states then

k(Tw_Ts)Rath ~ phsf |:— dt

where the minus sign in the square brackets is necess-
ary in order to make the right-hand side of equation
(41) positive (note that 4 decreases with time). Rewrit-
ten in dimensionless notation equation (41) becomes

H Ral' h _Wi h

7 H) d0\H
which, integrated after the knee point time 6 ~ 0,
(when A/H ~ 1), yields approximately

(42)

1/4

(%) ~ 1 —ILTIRa”4 6-8,). (43)
This result shows that the height of the solid region
decreases as the time increases beyond 8,. The solid
promises to disappear entirely at a time 6, when
(h/H) « 1, which, according to equation (43), means
0,—8, ~éRa* 4, 44)

In order to verify this result, we turn to Fig. 11
which shows the calculated #/H vs 6. Judging from
the slopes of the curves, it is clear that the time interval
separating the knee (0,) from the zero-solid limit (6,)
decreases as the Rayleigh number increases. Indeed,
by extrapolating the curves of Fig. 11 with straight
lines downward it is possible to evaluate graphically
the time interval (8;—6,) and to construct Fig. 12.
We learn from the latter that (6;—0,) depends on Ra

in the way anticipated by equation (44) (recall that in
this first model / was assumed constant).

Alternatively, we may argue that at an intermediate
stage in this last regime the liquid-solid interface
advances such that both # and / decrease. It is simple
to assume that 4 and / decrease at the same rate, in
other words, that the interface advances while remain-
ing parallel to itself (Fig. 10(b)). Equation (41) still
applies, however, since da/d¢ ~ dl/d¢, equations (42)—
(44) are now replaced in order by

r\"*d [(h
va o |2 — | =
Ra (H) a0 <H> 45)
h 5/4
<§> ~1—Ra"*(0~0,) (46)
0,—0, ~ Ra~V*. @7

Equation (46) shows that #/H decreases almost lin-
early in @, which is confirmed also by the shape of the
curves presented in Fig. 11. Note further that the
curvature of these curves is positive and that the same
property is shared by the A/H function anticipated
in equation (46). Most interesting, however, is that
changing the solid shape model from Fig. 10(a) to
Fig. 10(b) does not change the conclusion that the
time of solid disappearance must scale as Ra~"*: like
equation (44) earlier, equation (47) finds support in
the data plotted in Fig. 12.

The Nusselt number scale consistent with equations
(46) and (47) is Nu ~ Ra}’*, which means

Nu ~ [1—Ra"*(§—6,)]"°. (48)

This scaling law anticipates an increasingly steeper
descent of the post-knee Nusselt number as Ra
increases (Fig. 5). Furthermore, equation (48)
describes a close-to-linear Nu(#) function the cur-
vature of which is negative: these features are both
evident in Fig. 5, especially by viewing the post-knee
curves drawn for Ra = 10% and 10’.

Finally, we can think in terms of Fig. 10(c) and
imagine a late enough stage when the solid has dis-
appeared almost totally (k « H) leaving a nearly hori-
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Fi. 11. Numerical results for the history of the height of the solid region, measured along the right-hand
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zontal ‘lens’, such that 2 « /. In this limit the heat
transfer into the solid is impeded chiefly by the hori-
zontal thermal boundary layer that forms over the
lens of length /. The heat transfer part of this natural
convection melting problem formed the subject of a
classical paper by Clifton and Chapman [21]. It can
be shown that in high Pr fluids the thermal boundary
layer thickness scales as /Ra;"°, where Ra, =
Ra({/H)*. The energy balance at the interface now

reads
KT —=T5) , s dh
SR ~ ph| (49)
which eventually leads to
3 d/h
..... s ~ .
( l) R d6 (H) (50)

Assuming for the sake of comparison that the scen-
ario of Fig. 10(c) prevails throughout the ¢, < 6 < 8,
regime, we learn from equation (50) that the time
interval (8,~8;) would vary as Ra~"*. This con-
clusion does not differ much from the Re~* depen-
dence reached twice earlier, based on Figs. 10(a) and
(b). An alternative argument would be to view the cir-
culation near the shrinking solid as a corner flow of
the type described in ref. [22]. Based on the results of
this section, we believe that any convection model

attached to a shrinking solid leads to conclusions that
support the one outlined already, in other words, that
the time scale of the solid vanishing phase is relatively
insensitive to the assumed shape of the solid.

ADDITIONAL EFFECTS

The objective of this study has been to identify and
sort out the most basic regimes and scales of the
phenomenon of natural convection melting in a rec-
tangular enclosure. It is an interesting and challenging
problem because both the shape and the size of the
liquid space change in time. Some of the scales men-
tioned in this paper had been identified previously in
the literature ; others had to be uncovered here for the
first time in order to put together a coherent story
of how these scales replace one another as the time
increases. It is only because of this careful scaling
work that we were able to construct, for example, the
three-regime Nu correlation proposed in equations
(36) and (37).

One limitation of a just completed study may very
well become the objective of a future one. In this
section we outline three possible extensions of the
scaling theory formulated in this paper.

The effect of liguid thermal inertia (Stefan number)
In the present study we focused both theoretically
and numerically on the limit of negligible thermal
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inertia in the liquid space, that is, on the limit of small
Stefan numbers. It is possible to rely on scaling one
more time in order to reach towards the domain of
large Stefan numbers. The heat transfer rate pumped
through the left wall (kAT Nu) is used both for
advancing the position of the liquid—solid interface
and for warming the newly created liquid up to the
average temperature of the liquid space

ds, ds,,
~ pantid . 5
kAT Nu ~ phH P + pcATH O 51
This translates into the scaling law
ds,
~ 2 52
Nu ~ (14 5te) o (52
or, more precisely
dS.
Nu=(14+C, Ste) a0 (53)

where C, is a numerical constant of order one. At
finite Stefan numbers the melting rate dS,,/d@ trails
the Nusselt number by the factor (1+C, Ste). In the
pure convection regime, for example, we would have
Nu = ¢, Ra"* and

dS,, ¢ Ra

= e, 4
dd  1+C, Ste 59

The C, constant could then be determined from a
series of numerical simulations that do not neglect the
effect of liquid thermal inertia.

The low Prandsl number limit

The scaling theory developed in this paper can be
repeated for the case of natural convection melting of
a solid the liquid phase of which has a Prandtl number
considerably smaller than one. The feature that dis-
tinguishes this case from the ‘Pr > 1’ case assumed in
this paper is the thickness of the thermal boundary
layer in the convection zone of height z. In place of
equation (18) we write (cf. p. 120 of ref. [5], the case
‘Pr <17

8, ~zPr Y4Ra V* (55)

which leads to a new scaling law for the convection
zone height

z~ HRaPro*. (56)

Comparing this result with equation (19) we note that
the shift from the high Prandtl number limit to the
low Prandtl number limit is accompanied by the
replacement of Ra with the group Ra Pr in the analy-
sis. Indeed, if we repeat the analytical steps contained
between equations (20)—(30) we obtain the following
results for the Nusselt number scaling law in the mixed

heat transfer regime:
Nu~0-'* L RaPro>? 7

the time marking the end of the mixed regime
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6, ~ (RaPr)~? (58)
the coordinates of the minimum in the Nu(8) curve
Nty ~ (Ra Pr)'* (59)
Opin ~ (Ra Pry~ 12 (69)
the scaling laws for the convection dominated regime

(61)
(62)

Nu ~ (RaPr)'/*
S,y ~ H(Ra Pr)V*0

and, finally, the time marking the end of the con-
vection dominated regime

L —~ 4

6, ~ }}(RaPr) . (63)

The smooth correlations recommended for the first
three regimes {Figs. 1{a)—(c)) have the form

Nu = (20)" " +{c, (Ra Pr)/* —(26)~'7]

x [1+(c; Ra¥* Pr* 0¥2)]'n  (64)

S = {[(26)*1" + ¢\ (Ra Pr) 401"} ™ (65)
in which the exponents (n,m) and the constants of
order one (¢}, ¢3) remain to be determined from com-
parisons with future laboratory measurements and
numerical simulations of Pr < 1 convection in cavities
carved by melting.

The effect of transient conduction in the solid phase

The case where the solid is at a temperature lower
than the melting temperature is important because in
laboratory experiments and in actual applications it is
difficult to maintain the solid uniformly at the melting
temperature. We mention this case because it marks
the end of the territory we can cover with the scaling
theory constructed in this paper. In the preceding
subsections we were able to extend the theory by vary-
ing the liquid Stefan number and Prandtl number
because, despite these extensions, the nature of the
heat transfer mechanisms remained as theorized in
Fig. 1. If one is to consider the additional effect of
conduction in the solid, one must construct a new
scenario in place of Fig. 1. It is not a question of
merely introducing a new dimensionless group (the
solid Stefan number), rather, it is the challenge of
recognizing the time scales of the heat transfer regimes
that keep changing on both sides of the liquid-solid
interface. In this effort, easy access to numerical
experiments that account for conduction in the solid
(i.e. unlike the present ones) is essential.
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THEORIE D’ECHELLES DE LA FUSION AVEC CONVECTION NATURELLE DANS
UNE ENCEINTE

Résumé—Cette étude identifie les échelles et les régimes les plus fondamentaux du phénoméne de fusion
avec convection naturelle dans une enceinte chauffée latéralement. Dans une premi€re partie, la méthode
des échelles est utilisée pour montrer que le phénoméne concerne quatre régimes: {a) la conductivn pure,
(b} le régime mixte dans lequel la zone supérisure du liquide est régit par la convection ef la zone inférieure
par la conduction, {c) le régime de convection et enfin, (d} le régime de “solide compact”. Pour les trois
premiers régimes, la théorie prédit une courbe de nombre de Nusselt en fonction du temps qui a une allure
semblable a lisotherme de van der Waals, en particulier, un Nu minimum de Pordre de Re'* 4 Pinstant
Ste Fo de Pordre de Ra~ Y2 o1 Ste est le nombre de Stefan du liquide surchauffé et Fo le nombre de Fourier

basé sur H. La position cotrespondante du front moyen a un point ('inflexion au temps proche de Ra”

12

La théorie montre aussi que pendant le quatriéme régime le solide disparait pendant un intervalle de temps
de Pordre de Ra~ V%, La seconde partie de P'étude concerne les expériences numérigues dont le but est de
vérifier que la théorie construite dans fa premidre partie est correcte. Les simulations numériques sont
basées sur approximation du front ef de convection naturelle quasi-stationnaires. Le domaine para-
metrique couvert par ces simulations est 0  Ra € 108, 0 < Ste Fo < 0,2, Pr=50et HiL = 1,00 Lestla
dimension horizontale de la cavité et Ra le nombre de Rayleigh basé sur H. Des formules pour Nu et la
position du front de fusion en fonction du temps sont données en combinant les conclusions théoriques et
numérigues de Pétude.



Scaling theory of melting with natural convection in an enclosure

THEORIE ZUR BEURTEILUNG DES SCHMELZVORGANGS MIT NATURLICHER
KONVEKTION IN EINER EINSCHLIESSUNG

Zusammenfassung—In dieser Arbeit werden die grundsitzlichen Bereiche beim Schmelzen unter natiirlicher
Konvektion in einem seitlich beheizten Hohlraum dargestelit. Im ersten Teil der Untersuchung wird mittels
einer GréBenordnungs-Abschitzung gezeigt, daB das Phinomen aus einer Abfolge von vier Bereichen
besteht: (a) Gebiet der reinen Wirmeleitung, (b) Mischgebiet, in dem im oberen Teil der Fliissigkeit
Konvektion und im unteren Teil Wirmeleitung vorherrscht, (c) Konvektionsgebiet und schlieBlich (d), das
letzte, sogenannte “shrinking solid”-Gebiet. Fiir die ersten drei Bereiche liefert die Skalierungs-Theorie
eine zeitabhingige Nusselt-Zahl, die dhnliche Eigenschaften wie die van der Waals-Isothermen aufweist
und insbesondere ein eindeutiges Minimum der Nu-Zahl im Bereich Ra'” bei der Zeit Ste Fo im Bereich
von Ra~'? zeigt. Dabei ist Ste die Stefan-Zahl der iiberhitzten Fliissigkeit und Fo die mit H gebildete
Fourier-Zahl. Die korrespondierende mittlere Lage der Schmelzfront hat einen Wendepunkt zu einer Zeit
bei Ra~'2 Die Theorie zeigt weiter, daB im vierten Bereich die festen Bestandteile in einem Ste Fo
Zeitintervall von Ra~'* verschwinden. Den zweiten Teil der Arbeit bilden numerische Experimente, die
die im ersten Teil aufgestellte Theorie verifizieren sollen. Die numerischen Simulationen beruhen auf der
Niherungsmethode der quasistationiren Front und der Annahme quasistationérer natiirlicher Konvek-
tion. Die hier durchgefiihrten Parameterstudien decken einen Bereich 0 < Ra < 10%, 0 < Ste Fo < 0,2;
Pr=50und H/L =1 ab, wobei L die horizontale Abmessung des Hohlraums und a die auf H bezogene
Rayleigh-Zahl ist. Es werden geschlossene Korrelationen fiir die Nusselt-Zahl und die Orts-Zeit-Funktion
der Schmelzfront durch Kombination der theoretischen und numerischen Ergebnisse aufgestellt.

TEOPUA IMOJOBWS NTPOLIECCOB ITJIABJIEHUS NMPU ECTECTBEHHON KOHBEKLIMHU B
3AMKHVTOMH MOJIOCTH

Amvoraums—OunpenencHsl HauOoNee XapaKTEepHBIE BEJIMYHHBI H PEXHMBI MJIaBJICHHS ¢ YYETOM €CTECT-
BEHHO! KOHBEKHHMH B 3aMKHYTO IOJIOCTH, HarpeBaeMoi c6oky. B nepBoil wacTn BccleIOBaHUs UCTIO/Ib-
3yeTcd METOX TEOpHH mnoxobms 4YroObl MOKa3aTh, YTO SBJCHHE I[UIABJICHHS BKJIIOYAET YEThIpe
MOC/IEAOBATENBHO NPOXOAALMX peXMMa: (a) TEIUIONPOBOAHOCTD, (6) CMEIIaHHBIA PEXHM, B KOTOPOM
JJIS BEPXHEH YaCTH XHUIKOCTH CIPABEUTHBBI 3aKOHbI KOHBEKTHBHOTO TEIJIOOOMEHA, a HIKHEH—3aKOHbI
TEIUIONPOBOIHOCTH, (B) KOHIYKTHBHBIH TEIUIOOOMEH M, HaKoHeW, (r) mocaeanuii peXuM WIH “ycaaka
TBepAOro Tena”. J{na mepebiX TPeX PeXHMOB € MOMOMIBIO TCOPHH NOAOGHS mpeacka3aHa 3aBHCHMOCTH
yicna Hyccenbta oT BpeMeHd, koTopas nogno6Ha uzoTepMe Ban nep Baanbca, B HaCTHOCTH, MEHAMYM
Hyccensta nopsaka Ra'/* coorserctpyer Bpemenu Ste Fo mopanka Ra™!/2, rae Ste—wucno Credana
74 neperpetoi xuakocta 1 Fo—uncno ®@ypee, ocHoarHOoe Ha H. CooTseTcTByIOWIEE CpeHEE IIONIOXKe-
HHe (QPOHTA IUIABJIEHHS HMEET TOYKY meperuba mpu BpemeHH nopaaka Ra~'/2. Teopus mokaswbiBaer
Iasee, 4TO B YETBEPTOM PEXHMe TBEPAOE TENIO MCYE3AET 3a Bpems nopsaka Ra~ '/4, Bo sropoii yacTu
paGoThl MpeNCTaBlieHbl YMCJIEHHBIE PACYEThl, IIeJIb KOTOPLIX NPOBEPHTE MPAaBHILHOCTh TEOPHH, CO3AAH-
HOH B nepBoil uacTH. YHCICeHHOE MOIEJAPOBAHHE OCHOBAHO Ha NPHOJMXEHHH KBA3HCTANMOHAPHOrO
(POHTA H NPEANOTIOKEHHH O KBa3HCTaLMOHAPHOH €CTECTBEHHON KOHBEKIHMH. MozeMpoBaHUE BBIIOJI-
HeHO B cieAyrommx o6nactax napamerpos: 0 < Ra < 108, 0 < Ste Fo < 0,2, Pr=50 u H/L = 1, roe
L—ropH30HTaNbHBIA pa3Mep NOJOCTH, a2 Ra—unciio Panes, ochoBanroe Ha H. B pesynbTaTe 06neauHe-
HHSl TEOPETHYECKUX H YHUCIICHHBIX Pe3yJbTATOB HOJNy4eHbl COOTHOLIEHHS, Gin3KMe Mo GHopme, 11 3aBH-
camocreit uncna Hyccenbra n nosioxeHust GpoHTa IUIaBJIEHAS OT BPEMEHH.
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