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Abstract-This study identifies the most basic scales and regimes of the phenomenon of melting with 
natural convection in an enclosure heated from the side. In the first part of the study the method of scale 
analysis is used to show that the phenomenon consists of a sequence of four regimes: (a) the pure 
conduction regime, (b) the mixed regime in which the upper portion of the liquid gap is ruled by convection 
and the lower portion by conduction, (c) the convection regime and, finally, (d) the last or ‘shrinking solid 
regime. For the first three regimes the scaling theory predicts a Nusselt number vs time curve that has 
features similar to a van der Waals isotherm, in particular, a clear Nu minimum of order Ru”~ at a time 
Ste Fo of order Rn- I’*, where Ste is the liquid superheat Stefan number and Fo the Fourier number based 
on H. The corresponding average melting front position has an inflexion point at a time of order Ru- I”. 
The theory shows further that during the fourth regime the solid disappears during a SteFo time interval 
of order Ru-“~. The second part of the study consists of numerical experiments the purpose of which is 
to verify the correctness of the theory constructed in the first part. The numerical sim~ations are based 
on the quasi-stationary front approximation and the quasi-steady natural convection assumption. The 
parametric domain covered by these simulations is 0 < Ra < lo”, 0 < Ste Fo < 0.2, Pr = 50 and H/L = 1, 
where L is the horizontal dimension of the enclosure and Ra the Rayleigh number based on H. Closed 
form correlations for both NM and the melting front location time functions are developed by combining 

the theoretical and numerical conclusions of the study. 

OBJECTIVE 

THE PROGRESS on natural convection dominated 
phase-change heat transfer was reviewed most 
recently by Viskanta [I, 21. To the newcomer these 
reviews unveil a field that is already voluminous, 
established and blessed with a long string of important 
en~nee~ng applications. Yet, one general conclusion 
that emerges from these reviews is that natural con- 
vection and phase-change phenomena are quite com- 
plicated, to the point that “no unified theoretical treat- 
ment . . _ is within our grasp” (p. 846 of Viskanta [2]). 
The complications stem primarily from the strong 
coupling between the natural circulation of the liquid 
phase and the melting rate of the solid. It is this 
coupling that determines the instantaneous shape of 
the liq~d-solid interface, which becomes one of the 
key unknowns in each problem. 

In natural convection melting of a solid heated from 
the side the liquid-solid interface changes its shape 
and position continually (Fig. 1). The variation of the 
geometry of the system is chiefly responsible for the 
peculiar character of the heat transfer measurements 
that have been reported. The common features of 
these measurements are revealed also by the present 
numerical Nusselt number calculations, which are 
illustrated in Figs. 5 and 8. In time, the overall Nusselt 
number describes a wavy curve with features similar 
to those of a van der Waals isotherm. These features 
have proven to be very puzzling, because so far it has 
been impossible to correlate the wavy Nusselt number 

curves in terms of the ~mensionless parameters sug- 
gested by routine dimensional analysis. 

The most comprehensive and focused effort of con- 
structing a unifying correlation for heat transfer and 
melting rates in cavities heated from the side was 
reported by Webb and Viskanta 233. These authors 
tried several correlation methods, using either the 
height of the enclosure (H) or the average thickness 
of the liquid zone (s,,) as the characteristic length 
scale. They showed that the classical methods fail to 
correlate adequately the heat transfer results over the 
entire time domain. Attributing this failure to the 
probable use of incorrect length scales, Webb and 
Viskanta [3] concluded with the following : 

“Caution is therefore advised when using cor- 
relations in the literature for design purposes or as 
quantitative comparisons with independent inves- 
tigators. The proper characteristic length in mel- 
ting~solidification needs more research attention.” 

These final words sum up the motivation for under- 
taking the present study. Its objective is (1) to identify 
the correct scales of the phenomenon and (2) to use 
these scales in order to construct a heat transfer cor- 
relation that covers successfully the entire time 
domain. 

SCALE ANALYSIS 

The key to the correct correlation of seeminglycom- 
plicated trends such as those of convection melting is 
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NOMEN~~~U~E 

(‘l,C2 empirical constants, equations (37) s, ” 
c’,, c; empirical constants, equations (64) 

dimensionless average melting front 
position, s,,fH 

and (65) Ste liquid superheat St&an number, 
C constant for Neumann’s solution, equation (4) 

equation (8) f time 

C1 empiri~l constant, equation (53) T temperature 
FO Fourier number, equation (4) T, interface (melting) temperature 

9 gravitational acceleration TX\, warm wall temperature 
h height of solid region li horizontal velocity 

hsT latent heat of fusion I’ vertical velocity 
H height of enclosure s horizontal coordinate 
k liquid thermal conductivity .t vertical coordinate 
I horizontal dimension of solid : height of the convection dominated 

region liquid region. 
L horizontal dimension of enclosure 
in empirical constant, equation (40) Greek symbols 
n empirical constant, equation (37) thermal diffusivity 
Nu Nusselt number, equation (5) ; coefficient of volumetric thermal 

Nfd,in minimum Nusselt number, expansion 
equation (23) 6, thermal boundary layer thickness in 

Pr Prandtl number convection zone of height z 

:. 

total heat transfer rate n dimensionless time, equation (3) 

R; 
convective heat transfer rate (),, time of end of conduction, equation (33) 
Rayleigh number based on H, 0, time marking the end of the mixed 

MT, - T,)Hil(~v) regime, equation (22) 

R% Rayleigh number based on h, 02 time when the top wall is bathed fully by 

,@(TW-- r,)h’l(av) liquid, equation (29) 

Ra, Rayleigh number based on I, 0, time when the solid disappears 

Y/U,- T*)~3!(~$ L” time when Nu reaches its minimum 
s melting front position value, equation (24) 

3,” average melting front position, 1’ kinematic viscosity 

equation (26) c transformed horizontal coordinate, 

&p melting front position measured along equation (41) 
the top wall P density 

S dimensionless melting front position, * strcdmfunction 

S/H Y dimensionless streamfunction. $jv. 

- 

the identificatjon of the proper scales of the phenom- 
enon. Consider the time-dependent melting of an 
energy storage phase-change material in a vertical 
rectangular enclosure heated from the side (Fig. 1). 
Initially, the H x L enclosure is filled entirely by the 
solid phase, the initial temperature r, of which is 
uniform. For simplicity we assume also that T, is the 
same as the fusion temperature of the material, in 
other words, we assume that the degree of solid sub- 
cooling is zero. Beginning with the time t = 0, the left 
wall of the enclosure is heated and maintained at 
a constant temperature level T,. This heating effect 
causes both melting at the liquid-solid interface and 
natural convection in the region carved out for itself 
by the liquid phase. 

and solid phases is negligible, (iii) the liquid has a 
Prandtl number greater than one, and (iv) the prop- 
erties are all constant, with the exception of the linear 
density-temperature relation assumed in the buoy- 
ancy term of the momentum equation (the Boussinesq 
approximation). 

The conduction limit 
It is well understood that immediately after t = 0 

the melting process is ruled by pure conduction [ l--3]. 
The horizontal heat flux across the incipient vertical 
liquid film is balanced entirely by the enthalpy 
absorbed at the liquid-solid interface (see the 
Nomenclature) 

The other assumptions on which this study is based 
are: (i) the liquid Row is laminar and two-dimen- 
sional, (ii) the density difference between the liquid 
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Equation (1) shows that from the beginning the liquid 
layer thickness is a fuaction of time 

where 0 is the dimensionless time 

A~~rdiug to the usuaI t~noIo~y r>f phase-change 
heat. transfer, the dimensionless time f? is t&e sxa 
as the product of the Stefan and Fourier numbers, 
0 c: Sle Fo, where S& measures the degree of liquid 
superheat and Fo the time ofthermal diffusion across 
the distance H 

The Nusselt number that corresponds to this pure 
conduction limit is 

where Q is the total heat transfer rate through the left 
wall af the enclosure, per unit length in the direction 
normal to the plane of Fig. I (a). 

The preceding results do not add a~~~~g to what 
we know &ready from ~enrnann~~ exact sol&on 141 

; =i: 2cF0”~ (6) 

Nu= [erf(C)]-‘7E-t’Zl;i)--‘a (7) 

where @is an nr@cit function of the St&an number 

Sk? = iTw 
erf (C) 

exp(-C2j- 

The purpose of the safe am&is represented by equa- 
tions (l)-(f) is to show that its ~r~d~~~~ons agree 
within a factor of order one with the results of the 
corresponding exact solution (for more on this see pp. 
17-21. of ref. [5]). Note that in the Ste --* 0 limit the 
exact solution, equations @i-(8), reduces to 

that is, to results that agree within a factor of order 
one with equation (2). 

Before abandoning the pure conduction limit, it is 
worth noting that an in~n~tes~al~~ smal] convection 
heat transfer ef%et is present even in the limit B + 0. 
Consider the slender vertical cavity of height H and 
thickness s, the tiquid content of which is exposed to 
the horizontal temperature difference (T, - TS) I 
Assuming that the coefficient of volumetric thermal 
expansion of the liquid (fs) is positive, the hquid will 
circulate &&wise in a very slender ‘celt” of size H x S. 
The vertical velocity s&e oF &is very slender cotm 
terflow, v, is determined by the balance between the 
vertical buoyancy effect gj(T,.,- Tr) and the vertical 
friction effect in a gap of thickness s (namely, W/S”). 
The resulting velocity scale is 

in which s(t) is given by equation (2). 
The convective heat transfer rate carried upward by 

this counterfiow is 
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in which (psv) represents the vertical mass flow rate 
of one branch. The weak convective heat current Qc 
originates from the bottom end of the hot wall, flows 
vertically through the s-wide gap and, ultimately, is 
absorbed by the top end of the cold wall (in our case. 
by the top end of the liquid-solid interface). The total 
heat transfer rate in the horizontal direction, that 
is, through the H-tall liquid gap, is the sum of the 
conduction and convection contributions 

Noting the Nusselt number definition (5), this Q esti- 
mate translates into 

Nu - B~“2fRU03~’ (H-+0). (13) 

The convection contribution (Rae 3rZ) participates in 
the sum (13) with a numerical coefficient of order one, 
which is not shown. The important conclusion is that 

relative to the dominant effect of pure conduction 
(0 I!*) the convective contribution increases with 
time. 

The mixed conduction plus convection regime 
The deformation of the rectangular shape of the 

liquid zone is from the beginning the result of the 
convective heat transfer contribution Q,. In order to 
see this consider again the 0 + 0 limit, which geometri- 
cally translates into the infinitely slender enclosure 
limit, H/s + co. In this geometric limit the flow field 
consists of a slender counterflow of height H ter- 
minated by two end regions the height of which is of 
the same order as the transversal dimension of the 
counterflow [6, 71. Let stop be the length scale of the 
enlarged top end region (Fig. l(a)). The top portion 
of the liquid-solid interface melts faster on account 
of Qc, which must ‘sink’ into the top end region. 
Writing that the melting rate of the s,,,-tall portion of 
the interface is ruled by Qc plus the conduction heat 
transfer collected over the height s,,~ 

using equations (10) and (11) we obtain 

&“I, - H(~+RuO~~*)‘~’ (O-to) 

in other words 

(14) 

(15) 

- 1 +O(Ra03’2) (0 + 0). (16) 

This result shows that from the beginning the top 
portion of the liquid-solid interface recedes faster 
than the remainder of the interface. It is known that 
if the horizontal dimension of a rectangular tnclosure 
(with fixed Ra) increases monotonically, the con- 
duction heat transfer regime gives way eventually to 
the convection regime, in which both sides of the 
enclosure are lined by distinct thermal boundary lay- 

ers (see, e.g. p. 166 of ref. [5]). Equation (16) shows 
that the convection regime will set in starting from the 
top of the liquid space. 

Let the unknown vertical dimension z be the height 
of the upper region that has become wide enough to 
be ruled by convection. The heat transfer across the 
remainder of the liquid space (height = II-:. Fig. 
1 (b)) continues to be ruled by conduction. Now. con- 
vcction in the upper zone means that the thermal 
boundary layer thickness in this zone, ci;, is smaller 
than the horizontal dimension of the carved-out upper 
zone. The convective zone expires at its lower 
extremity, where 6; is of the same order as the gap 
thickness of the lower (conduction) zone 

ii, - .s, at the convection-conduction transition Icvel. 

117) 

In equation (17) we have the means for estimating the 
height of the convection-dominated region, 2. Since 
the liquid has a Prandtl number greater than one. we 

have 

n;;-ZRU; ‘-I (18) 

where Ra, is the Rayleigh number based on z, namely 
Ra, = g/k’(T,- T,)/(cw) or Raz = (z/H)‘Ra. Com- 
bining equations (17) and (18) with equation (2) for 
the conduction gap s, yields 

z - HRut?‘. (19) 

In conclusion, the convection zone expands down- 
ward as the time increases. The expansion is faster 
at higher Rayleigh numbers. Note further that this 
expansion phenomenon meshes very well with the 
growth of the square-end top region of the conduction 
limit, equation (16) and Fig. l(a). Also worth noting 

is the relation z/s - Ru 0 3!2. 
Regarding the total heat transfer rate through the 

heated wall, Q, we note that the heat transfer mech- 
anism is convection over the height z and conduction 
over (H- 7). The total heat transfer t-ate is therefore 

the sum 

which, in view of equations (2). (5), (18) and (19) 
translates into 

Nu - @‘,?+Ra~“, (21) 

As expected, the Nusselt number is made up of two 
contributions, one due to conduction and the other 
to convection. One rewarding feature of equation (21) 
is that it meshes perfectly with the scaling law that 
holds in the 0 -+ 0 limit, equation (13). This time, 
however, the convection contribution (Ra 0 3’2) is not 
necessarily negligible when compared with the con 
duction contribution (0- I/‘). 

In conclusion, the heat transfer scaling law (21) 
holds starting with 0 = 0 until the assumed convection 
zone (height z) extends all the way to the bottom of 



Scaling theory of melting with natural convection in an enclosure 1225 

the liquid space, that is, until z N H. If we label 6, the 
time scale that corresponds to z N H, equation (19) 
suggests that the mixed conduction plus convection 
regime ends at a time of order 

8, ff 1pa- 1’2. (22) 

In the time interval (O,B,) in which it is valid, the 
Nusselt number scaling law (21) distinguishes itself 
through tire anuZytica1 prediction of an Nu minimum 
of order 

Nu,~, N Ra’j4 

which occurs at a time of order 

(23) 

&lmin N Ra- ‘D (24) 

i.e. at the end of the mixed heat transfer regime, 

6min N 8 i. These scales follow from applying 
aNu/ZJ = 0 to equation (21). 

The convection regime 
At times greater than f3, the convection-dominated 

zone fills the entire liquid space of height H. Distinct 
boundary layers line both the (T,) wall and the (T,) 
phase-change interface (Fig. l(c)). Since Pr > 1, the 

overall Nusselt number scale is 

Nu N Raii4. (25) 

This scaling law holds even though the phase-change 
interface is deformed and continues to deviate from 
the vertical plane shape. It is known that the boun- 
dary-layer convection scaling law (25) works very well 
also for curved surfaces, provided Ra is based on a 
length scale of the same order as the vertical dimension 
of the surface [8]. 

The heat transfer rate (25) is related to the speed 
with which the melting front advances to the right, 
ds/dt. Since in the convection regime the melting front 
is always deformed, s(y, t), it is more appropriate to 
argue in terms of the height-averaged melting front 
location 

s,,(t) = ; drt 0 dy. (26) 

Writing that the total heat transfer rate Q is used for 
the purpose of displacing the melting front to the right 

(27) 

and noting that equation (25) means Q N Ra”4k 
x (T,-- T,), we arrive at the scaling law for the con- 

vection-driven interface. 

s,, N HRa’14 0. (28) 

In a system of finite horizontal extent, L, the scen- 
ario concluded with equations (25) and (28) holds 
until the liquid-solid interface reaches the right wall, 
s,, N L. Let & represent the time scale associated with 
this event. Equation (28) yields immediately 

19~ - i Ra- ‘14. 

The convection regime exists only if e2 > 8,, that is, 
if 

H 
Rali4 > - 

L’ 

When this criterion is not satisfied {i.e. when tj2 < @,) 
the mixed conduction plus convection regime of Fig. 
l(b) ends at a time of order tJ2, that is, before the 
Nu(@) curve has had time to reveal its minimum. That 
criterion (30) and the Nu minimum are threatened as 
Ra decreases is clearly illustrated by the numerical 
~~(~) curves plotted in Figs. 5 and 8. Worth noting 
also is that equations (29) and (30) and, for that 
matter, all the other convection scales described in 
this paper are valid provided the Rayleigh number is 
small enough to prevent the transition to turbulent 
natural convection boundary layer flow. Criteria for 
predicting the transition Rayleigh number are 
reviewed in ref. [9]. 

What happens after the melting front reaches the 
right wall, 8 > I!I*, constitutes a distinct heat transfer 
regime the main features of which are sketched in Fig. 
1 (d). For a better balance between scaling theory and 
numerical experiment, we postponed the discussion 
of this last regime until we had a chance to test numeri- 
cally the validity of the predictions made up till now. 

NUMERICAL VERIFICATION OF THE SCALING 

RESULTS 

In parallel with the theoretical consideration of the 
phenomenon of natural convection melting in an 
enclosed space, we conducted a series of numerical 
simulations of the Ra range @-lo8 in a square box 
and at a Stefan number of order 0.1. The numerical 
formulation of the problem is standard, therefore, 
we make no claim concerning its originality. In the 
interest of succinctness we say only that the numerical 
procedure was based additionally on the so-called 
quasi-steady natural convection approximation [lo]. 
The numerical results developed in this way are valid 
in the limit of negligible liquid thermal inertia, namely, 
Sfe -+ 0. The details of the numerical formulation and 
procedure are stored in ref. [ 111. 

One test of the numerical solutions consisted of 
compa~ng the calculated average melting front 
location 

s,,(e) = 
s 
’ sje, Y) dY (31) 0 

with experimental and numerical results reported by 
other investigators. For this reason the Prandtl num- 
ber was fixed at Pr = 50, which is representative of 
the Pr range of n-octadecane [12]. The actual value of 
Pr is not crucial in the testing of the preceding scaling 
theory, provided Pr > 0( 1). 
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FIG. 2. Comparison between numerical results and experimental measurements : A, Ste = 0.09. Ru = 10b 
[IO]: 0. Ste = 0.09, Ro = 10’[13]; +, Ste = 0.1, Ra = (8.9)10’[15]: -.-. Sir = 0.2, Ra = 10’[14]. 

Figure 2 shows the results of this comparison in the 
case of a high Rayleigh number (Ra = IO’) and in the 
relatively short-time interval 0 < 0 < 0.006 in which 
the heat transfer mechanism had had enough time to 
pass through the conduction, mixed and convection 
regimes (Figs. 1 (a)-(c)). The present results fall right 
on top of the numerical results of Kassinos and Prusa 
[I 31. Both sets of results’fall slightly below Gadgil and 
Gobin’s [14] calculations, which is understandable in 
view of the fact that in Gadgil and Gobin’s study the 

top surface of the liquid pool was modeled as free 
(zero shear), in contrast to the no-slip condition used 
here. The same figure shows that the experimental 
results published by Ho and Viskanta [lo] and Bareiss 
and Beer [ 151 fall below the present calculations, some 
of them falling below even the pure conduction solu- 
tion Ra = 0. Not shown in this figure are Ho and 
Viskanta’s numerical results for the same case, which 
also fall below the present results (the solid line) as 

well as those of Kassinos and Prusa [13]. 
In Fig. 3 the present results are compared with those 

of Okada [16] at a lower Rayleigh number and over 
a much longer time interval, 0 < 0 < 0.045. The inter- 
esting fact here is that the slopes of the numerical and 
experimental curves for Ru = (5.34)106 are nearly the 
same. It is possible that the true starting point of 
Okada’s curve (the crosses) is somewhere between our 
B = 0 and 0.005. because any enclosure-type appar- 
atus has a ‘time constant’ that separates the moment 
when the heating effect is applied to the wall from the 
moment when the contents of the enclosure begin to 
experience this heating effect. Worth noting is that if 
Okada’s curve is shifted enough to the left so that it 
becomes, as it should be, tangent to the pure con- 
duction solution Ra = 0, then the numerical and 
experimental curves agree very well. 

The numerical results that are most relevant from 
a heat transfer engineering standpoint are the evol- 

ution of the average melting front location (Fig. 4), 
and the Nusselt number averaged over the heated 
vertical wall (Fig. 5). In all the runs the aspect ratio 
of the enclosure was held fixed at H/L = 1. The 
description of the numerical solutions for the llow 
pattern in the liquid zone is omitted for the sake of 
conciseness : these patterns differ little from what was 
revealed by experiments [lo, 12-!6] and by Okada’s 
extensive study [ 171. 

The family of five S,,(O) curves of Fig. 4 shows the 
manner in which the liquid zone expands into the 
solid as the time increases. Especially at high Rayleigh 
numbers, each curve is roughly a straight line with a 
slight undulation : this and the orientation (slope) of 
the curve are anticipated by the scale analysis of the 
first three heat transfer regimes. One important point 
along each S,,(O) curve is the point marked with a 
filled circle : this point corresponds to the time when 
the uppermost section of the liquid-solid interface 

first touches the vertical adiabatic boundary of the 
system. For reasons that are explained in the next 
paragraph and Fig. 5, we label this special time Olinrr 
and recognize that according to equation (29) Otiicc 
must be of the same order of magnitude as 02. The 
second row of points in Fig. 6 shows that indeed the 
ratio Okllcr,/Ul is of the order of one. 

Figure 5 shows how the Rayleigh number affects 
the shape and position of the Nusselt number vs time 
curve. Although defined in the beginning of equation 
(5), the numerical solution version of the definition of 

Nu is 

d Y. (32) 
y= 0 

Each Nu(B) curve has the features anticipated in the 
scale analysis section, first, the pure conduction decay 
of order 0 ‘I’, followed by the mixed regime with its 
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FIG. 3. Comparison between numerical results and experimental measurements : x , Ste = 0.0921, 
Ra = (5.34)106 [16]. 

IJ.00 0.04 0.08 0.12 0.16 
8 

FIG. 4. Numerical solutions for the average melting front location, as a function of time and Rayleigh 
number. 

Nu minimum and, finally, the pure convection Nu 
plateau of order Ra . ‘I4 The Nusselt number curve 
changes slope as it passes through the ‘knee’ point 
where the melting front first touches the right-hand 
side adiabatic boundary. The time associated with this 
event is Qknee. At times greater than eknee the Nusselt 
number decreases relatively fast and almost linearly 
in time, as described in the section on the fourth 

(shrinking solid) regime. 
Figure 6 tests the correctness of some of the scaling 

laws developed in the theoretical part of this study. 
The first row of points shows that the time of the 
Nusselt number minimum, emin, is indeed of the order 
of 8,, as anticipated in equations (22) and (24). It is 
interesting to note that the emin scale agrees very well 
with what Benard et al. [18] called the time of ‘end 

of conduction’. For the end-of-conduction time scale 
BCnard et al. reported an empirical correlation, which 
in the present notation reads 

f3,, = 4.59Ra-‘I*. (33) 

They estimated the B0 values for this correlation by 
intersecting the horizontal pure-convection plateau of 
each Nusselt number curve (Fig. 5) with the pure- 
conduction asymptote (9) shared by all these curves. 
Since, according to Fig. 6, our emin scale is approxi- 
mately 9Ra- I”, we conclude that Btnard et al’s end- 
of-conduction time scale is equal to half of the emin 
scale. 

Continuing with the reading of Fig. 6, we see that 
the third row of points uses the knee-point Nusselt 
number (Nuknee) to show that in the pure convection 



1228 P. JANY and A. BEJAN 

0.00 0.04 o.i2 O.iS 

f3 

FIG. 5. numerical solutions for the average Nusselt number at the heated wall, as a function of time and 
Rayieigh number. 

f NUknee I Ra1j4 

lli L 

f-NU min / RQ”~ 
i 

IO4 IO5 IO6 IO' IO8 IO9 
Ra 

FIG. 6. Numerical verification of the scaling laws expected for H,,,, Oknrc, Nuioec and Nu,,,, 

limit the Nusselt number scales as Ra’!‘. equation 3, - ~4, where 11 - (u/H)&‘: and ci _ F~i~2HR~‘:~ 

(25). Furthermore, the last row in Fig. 6 shows that (p. 120 of ref. [.5], the case Pr > I), therefore 
Plumi, scales as Ra’!“, as anticipated in equation (23). 

An overall test of the correctness of the fluid mech- 
anics scaling results has been constructed in Fig. 7. 
This figure shows the calculated streamfunction 
maximum, Y,,,, as a dimensionless measure of the 
flow rate of the liquid circulation. The figure was 
constructed knowing first that in the pure conduction 
limit $ N us, where s and 2’ are given by equations (2) 
and (10). In the dimensionless Y notation shown in 
the nomenclature this means 

Y - PY ‘I’ Ra”4 (convection). (35) 

Intersecting equations (34) and (35) we learn that the 
‘knee’ of each Y vs 0 curve is located at 0 - Ru- ’ ’ 
Recalling that Pr has been held fixed, these equations 
imply that all the Yr(0, Ra) curves should collapse onto 
a single curve if plotted as Y/Ra’:4 vs 0 Ra”‘. Figure 
7 shows that this is indeed the case and that the knee 
of this correlating curve is located in the domain where 
the abscissa parameter 0 Rn’!’ is of the order of one. 

Y - g 8 i/Z (conduction). (34) 
HEAT TRANSFER CORRELATION 

The Nusselt number and time scales tested in Figs. 
On the other hand, in the pure convection limit 4-6 provide the necessary backbone on which to con- 
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._ 
1 10 100 loo0 

8 - Ra"* 

FIG. 7. Scaling correct correlation of the evolution of the streamfunction maximum. 

struct a heat transfer correlation that spans the con- 
duction, mixed and convection regimes. In the con- 
duction regime (0 << 6,) the Nusselt number must 
approach the asymptote (2(I)- l/2, equation (9). In the 
mixed conduction plus convection regime (0 - 0,) the 
Nu(f?) passes through a minimum of order Ru”~. In 
the pure convection regime (0, < 0 < 0,) the Nusselt 
number is time independent and of order Ru’/~. These 
three types of Nu vs 0 behavior are explicitly evident 
in the single correlation 

Nu = (28))“‘+[c, Rali4 

-(2e)-“*][l+(c,Ra3’483’*)“]I’~. (36) 

The second pair of square brackets on the right- 
hand side of this correlation contains a canonical 
expression of the type recommended by Churchill 
[ 191. That equation (36) reproduces the analytical 
asymptotes of the three heat transfer regimes (equa- 
tions (9) (21) and (25)) can be seen while keeping in 
mind that n is an empirical exponent the value of 
which must be negative. For example, at large B’s the 
second pair of square brackets approaches the value 
1, therefore equation (36) approaches the pure con- 
vection scaling law Nu = c, &I”~. This limit allows us 
to evaluate c, as the ratio NulRaLf4 associated with 
the knee points of the curves of Fig. 5, that is, with the 
most distant states of pure convection. The average 
N~~~~R~“~ value displayed already in Fig. 6 is 0.35. 
The remaining constants, cZ and n, were evaluated 
empirically by fitting equation (36) to the Nusselt 
number minima of the Nu(ff) curves. In summary, the 
three constants that allow the three-regime correlation 
(36) to cover the time domain 0 < B < t12 are 

c, = 0.35, c2 = 0.0175, n = -2. (37) 

The smooth lines plotted in Fig. 8 show that the 
correlation, equations (36) and (37), summarizes very 

well the Nusselt number numerical results developed 
for the entire Ra range @lo’. One remarkable feature 
of this correlation is that in the B < 8, range the Nus- 
selt number does not depend on the geometric aspect 
ratio H/L. On the one hand, this feature should be 
expected since at times 0 smaller than e2 the natural 
circulation in the liquid zone is unaware of L. as a 
horizontal length scale. On the other hand, it is well 
known that in pure natural convection in rectangular 
enclosures (without melting) the aspect ratio of the 
fluid space plays an additional albeit minor effect on 
the convection scaling law assumed in equation (25) 
[20]. With respect to the instantaneous geometry of 
the liquid zone in the convection dominated regime 
of the present problem (height H, horizontal thickness 
s,,) the more complete heat transfer scaling law to 
consider in place of equation (25) is (ref. [20]; also p. 
173 of ref. [S]) 

where function j’ has a dimensionless value of the 
order of 0.3. Worth noting is that f decreases slightly 
as the time increases and the average aspect ratio H/s,, 
decreases. This effect has been neglected in the theory 
that led to correlation (36), and this is why that cor- 
relation is independent of an ‘aspect ratio’ until 
8 N 8,. 

CORRELATION FOR THE AVERAGE MELTING 
FRONT LOCATION 

The S,,(0) curves of Fig. 4 could be correlated 
similarly, by recognizing the scaling?correct analytical 
form of the S,,(e) function in each of the three heat 
transfer regimes that precede the knee point, B - &. 
It turns out that the same job is done even better by a 
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Nu 

FIG. 8. The match between the heat transfer correlation, equations (36) and (37), and the numerical Nzr 
results of Fig. 5. 

simpler correlation based on only the pure conduction 
and pure convection asymptotes 

s,,, = {[(20)“2]“f[L!, &P@]“}““. (39) 

We see here again the canonical form recommended 
by Churchill [19] and, quite clearly, the asymptotic 
forms of the S,,{@) function. The empirical constants 
that allow equation (39) to summarize best the 0 < O2 
information of Fig. 4 are 

r, = 0.35 and m = 5 (40) 

where c, is the same as in the preceding NU correlation. 
Figure 9 shows that the average melting front location 
correlation (39) fits the numerical results very well. 

1.00 

S CIV 

0.10 

THE FOURTH (SHRINKING SOLID) REGIME 

We turn our attention now to the fourth regime 
sketched in Fig. l(d), in which the remaining solid 
shrinks as its uppermost point (y = h) descends along 
the ~ght-hand wall. The liquid circulation is always 
in the convection regime, however, the heat transfer 
and melting rates depend on the size of the remanent 
solid. 

In order to determine the scales of this last regime 
it is necessary to make an assumption concerning the 
shape of the solid region. Let us assume first that early 
enough in this regime the cross-section of the solid is 
roughly a triangle the hypotenuse of which pivots 

FIG. 9. The match between the S,, correlation, equations (39) and (40), and the numerical results of 
Fig. 4. 
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b 
FIG. 10. Three asszmptions concerning the shape of the solid region during the fourth zegime (Fig. l(d)). 

about the bottom end of the liquid-solid interface 
(Fig. 10(a)). In other words, the solid cross-section 
scales as the product Ih, in which 1 is fixed. The heat 
transfer rate across the liquid space is impeded by two 
thermal resistances in series, the thermal boundary 
layer resistance along the heated wall (of order 
Ru-“~) and the corresponding resistance along the 
liquid-solid interface, which is of order RUT ‘I4 ; since 
Ra; ‘I4 > Rap ‘I“, it is the interface resistance that con- 
trols the heat transfer rate that melts the solid. The 
energy balance at the moving interface states then 

k(T,., - Ts) Ra,‘14 - ph,, 
W) 

[ 1 - dt (41) 

where the minus sign in the square brackets is necess- 
ary in order to make the right-hand side of equation 
(41) positive (note that h decreases with time). Rewrit- 
ten in dimensionless notation equation (41) becomes 

(42) 

which, integrated after the knee point time 0 N Q2 
(when h/H - I), yields approximately 

- 1 - TRa"' (f?-0,). (43) 

This result shows that the height of the solid region 
decreases as the time increases beyond OZ. The solid 
promises to disappear entirely at a time OS when 
(h/H) cc 1, which, according to equation (43), means 

@3-@2 N kRaP 1/4. (44) 

In order to verify this result, we turn to Fig. 11 
which shows the calculated h/H vs 8. Judging from 
the slopes of the curves, it is clear that the time interval 
separating the knee (0,) from the zero-solid limit (0,) 
decreases as the Rayleigh number increases. Indeed, 
by extrapolating the curves of Fig. 11 with straight 
lines downward it is possible to evaluate graphically 
the time interval (0,-e,) and to construct Fig. 12. 
We learn from the latter that (0,--Q,) depends on Ra 

in the way anticipated by equation (44) (recall that in 
this first model I was assumed constant). 

Alternatively, we may argue that at an intermediate 
stage in this last regime the liquid-solid interface 
advances such that both h and I decrease. It is simple 
to assume that h and I decrease at the same rate, in 
other words, that the interface advances while remain- 
ing parallel to itself (Fig. 10(b)). Equation (41) still 
applies, however, since dh/dt - dl/dt, equations (42)- 
(44) are now replaced in order by 

Ra’14 - - (gy’4$(k) 

h 

0 

5/4 

z 
- 1 -Ra1/4(e-e,) 

(45) 

(46) 

es - e2 - Ra- 1’4. (47) 

Equation (46) shows that h/H decreases almost lin- 
early in 0, which is confirmed also by the shape of the 
curves presented in Fig. 11. Note further that the 
curvature of these curves is positive and that the same 
property is shared by the h/H function anticipated 
in equation (46). Most interesting, however, is that 
changing the solid shape model from Fig. 10(a) to 
Fig. 10(b) does not change the conclusion that the 
time of solid disappearance must scale as Ra- ‘/4 : like 
equation (44) earlier, equation (47) finds support in 
the data plotted in Fig. 12. 

The Nusselt number scale consistent with equations 
(46) and (47) is Nu N Ra,!14, which means 

Nu N [l -Ra”4(tI-tl,)]3”. (48) 

This scaling law anticipates an increasingly steeper 
descent of the post-knee Nusselt number as Ra 
increases (Fig. 5). Furthermore, equation (48) 
describes a close-to-linear Nu(B) function the cur- 
vature of which is negative : these features are both 
evident in Fig. 5, especially by viewing the post-knee 
curves drawn for Ra = lo6 and 10’. 

Finally, we can think in terms of Fig. 10(c) and 
imagine a late enough stage when the solid has dis- 
appeared almost totally (h cc H) leaving a nearly hori- 
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FIG. I I. ~~~~tical results for the history of the height of the solid region, measured along the right-hand 
wall. 
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Fro. 12. The time interval needed by h/H to decrease from I to 0. 

zontal ‘lens’, such that la << I. In this limit the heat 
transfer into the solid is impeded chiefly by the hori- 
zontal thermal boundary Iayer that forms over the 
lens of length 1. The heat transfer part of this natural 
convection melting problem formed the subject of a 
classical paper by Clifton and Chapman [21]. It can 
be shown that in high Pr fluids the thermal boundary 
layer thickness scales as IRa; ‘!5, where Rni = 
R~~6/H)~. The energy balance at the interface now 
reads 

WiV---T,) ._ 5-- ,,;: _ @h,, (49) 

which even&& leads to 

ii h 
f&‘,5 _ _ ___ ._. 

0 df? H * (501 

Assuming for the sake of comparison that the scen- 
ario of Fig. IO(c) prevails throughout the Qz < 0 < o3 
regime, we learn from equation (SO) that the time 
interval (&--tY3) would vary as Ra”w’f5. This con- 
clusion does not differ much from the Ru- Ii4 depen- 
dence reached twice earlier, based on Figs. IO(a) and 
(b). An alternative argument would be to view the cir- 
cuiation near the shrinking solid as a corner flow of 
the type described in ref. [IX!]. Based on the results of 
this section, we believe that any convection model 

attached to a shrinking solid leads to conclusions that 
support the one outlined already, in other words, that 
the time scale of the solid vanishing phase is relatively 
insensitive to the assumed shape of the solid. 

ADDITIONAL. EFFECTS 

The objective of this study has been to identify and 
sort out the most basic regimes and scales of the 
phenomenon of natural convection melting in a rec- 
tangutar enclosure. it is an interesting and challenging 
problem because both the shape and the size of the 
liquid spa&e change in time. Some of the scales men- 
tioned in this paper had been identified previously in 
the literature; others had to be uncovered here for the 
first time in order to put together a coherent story 
of how these scales replace one another as the time 
increases. It is only because of this careful scaling 
work that we were able to construct, for example, the 
three-regime Nu correlation proposed in equations 
(36) and (37). 

One limitation of a just completed study may very 
welt become the objective of a future one. In this 
section we outline three possible extensions of the 
scaling theory formulated in this paper. 

The efleect ~~~~~~~~ ~~~~rn~l inertia (St&n n~~~~~~r~ 
In the present study we focused both theor~ti~ai~y 

and nnmericafly on the limit of negligible thermal 
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inertia in the liquid space, that is, on the limit of small 
Stefan numbers. It is possible to rely on scaling one 
more time in order to reach towards the domain of 
large Stefan numbers. The heat transfer rate pumped 
through the left wall (kATNu) is used both for 
advancing the position of the liquid-solid interface 
and for warming the newly created liquid up to the 
average temperature of the liquid space 

ds,, dsav 
kATNu N ph,,Hdt + pcATHdt 

This translates into the scaling law 

(51) 

Nu - (1 +a) yf 

or, more precisely 

(53) 

where C, is a numerical constant of order one. At 
finite Stefan numbers the melting rate d&/d0 trails 
the Nusselt number by the factor (1 + C, S&e). In the 
pure convection regime, for example, we would have 
Nu = c, Ra’f4and 

The C, constant could then be determined from a 
series of numerical simulations that do not neglect the 
effect of liquid thermal inertia. 

The low Prandtl number limit 
The scaling theory developed in this paper can be 

repeated for the case of natural convection melting of 
a solid the liquid phase of which has a Prandtl number 
considerabIy smaller than one. The feature that dis- 
tinguishes this case from the ‘Pr > 1’ case assumed in 
this paper is the thickness of the thermal boundary 
layer in the convection zone of height z. In place of 
equation (18) we write (cf. p. 120 of ref. [S], the case 
‘Pr < I’) 

6, N z Pr- ‘I4 Ra,- ‘I4 (55) 

which leads to a new scaling law for the convection 
zone height 

z = HRaPrB’. (56) 

Comparing this result with equation (19) we note that 
the shift from the high Prandtl number limit to the 
low Prandtl number limit is accompanied by the 
replacement of Ra with the group Ra Pr in the analy- 
sis. Indeed, if we repeat the analytical steps contained 
between equations (20)-(30) we obtain the following 
results for the Nusselt number scaling law in the mixed 
heat transfer regime : 

Nu N 6-‘i2+RaPrt?3t2 (57) 

the time marking the end of the mixed regime 

0, N (RaPr)-“2 (58) 

the coordinates of the ~nirn~ in the ad curve 

Nuti, N (Ra Pr) ‘I4 (59) 

Qmin N (Ra Pr) - Ii2 (60) 

the scaling laws for the convection dominated regime 

NU _ (Ra Pr) ‘I4 (61) 

s,, * H(Ra Pr) If40 (62) 

and, finally, the time marking the end of the con- 
vection dominated regime 

f32 - k(RaPr)-‘14. (63) 

The smooth correlations r~o~ended for the first 
three regimes (Figs. 1 (a)-(c)) have the form 

NZA = (28) - ‘/2 + [c’, (Ra Pr) ‘I4 - (28)-“‘1 

x [l + (c; Ra3’4 Pr3j4 83i2)“]‘i” (64) 

,S,, = { [(28) 112]m + [c’, (Ra Pr) “‘?I]“‘> ‘jrn (65) 

in which the exponents (n,m) and the constants of 
order one (c’,, c;) remain to be determined from com- 
parisons with future laboratory measurements and 
numerical simulations of Pr < 1 convection in cavities 
carved by melting. 

The effect of transient conduction in the solidphase 
The case where the solid is at a temperature lower 

than the melting temperature is important because in 
laboratory experiments and in actual applications it is 
difhcult to maintain the solid uniformly at the melting 
temperature. We mention this case because it marks 
the end of the territory we can cover with the scaling 
theory constructed in this paper. In the preceding 
subsections we were able to extend the theory by vary- 
ing the liquid Stefan number and Prandtl number 
because, despite these extensions, the nature of the 
heat transfer me~h~isms remained as theorized in 
Fig. 1. If one is to consider the additional effect of 
conduction in the solid, one must construct a new 
scenario in place of Fig. 1. It is not a question of 
merely introdu~ng a new dimensio~ess group (the 
solid Stefan number), rather, it is the challenge of 
recognizing the time scales of the heat transfer regimes 
that keep changing on both sides of the liquid-solid 
interface. In this effort, easy access to numerical 
experiments that account for conduction in the solid 
(i.e. unlike the present ones) is essential. 
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THEORIE D’ECHELLES DE LA FUSION AVEC CONVECTION NATURELLE DANS 
UNE FNCEINTE 

RBsumC-Cette etude identifie les tchelles et les regimes les plus fondamentaux du phenomene de fusion 
avec convection naturelle darts une enceinte chauffee lateralement. Dans une premiere partie. la methode 
des Qhelles est &h&e pour montrer que le phenom&ne eonceme quatre regimes : (a) la conducti~r pure. 
(bbf Ie r&me mixte dans fequel la zone su&ieure du liquide est regit par la convection ef la zone infttrieure 
par la conduction, (c) le regime de convection et enfin, (d) le rbgime de “solide compact”. Pour ies trois 
premiers regimes, la theorie prbdit une courbe de nombre de Nusselt en fonction du tetnps qui a unc allure 
semblable a l’isotherme de van der Waals. en pasticulier, un Nu minimum de I’ordre de Ru’,~ $ I’instant 
Ste Fo de I’ordre de Ra- ‘1’ oil Ste est le nombre de Stefan du liquide surchauffe et I;a le nombre de Fourier 
base sur N. La position correspondante du front moyen a un point d’intlexion au temps pro&e de Rap ’ ‘, 
La th&orie montre aussi que pendant ie quatrieme regime le solide disparait pendant un intervalle de temps 
de l’ordre de Ram i:4. La seconde partie de l’etude concerne ies experiences numiriques dent le but est de 
verifier que Ia theorie eonstrnite dans la premiere partie est correcte. Les simulations numeriques sent 
b&es sur l’approximation du front et de convection naturelle quasi-stationnaires. Le domaine pard- 
metrique couvert par ces simulations est 0 $ Ra $ lo’, 0 < Ste Fo < O+, 3 Pr=50et&L= l.ohL.estla 
dimension horizontale de la cavite et Ru le nombre de Rayleigh base sur H. Des formules pour Nu et la 
position du front de fusion en fonction du temps sont donnees en combinant les conclusions thdoriques et 

numbiques de l’etude. 
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THEORIE ZUR BEURTEILUNG DES SCHMELZVORGANGS MIT NATURLICHER 
KONVEKTION IN EINER EINSCHLIESSUNG 

Zusanmrenfassung-In dieser Arbeit werden die grunds&zlichen Bereiche beim Schmelzen unter natiirlicher 
Konvektion in einem seitlich beheizten Hohlraum dargestellt. Im ersten Teil der Untersuchung wird mittels 
einer Grogenordnungs-Abschltzung gezeigt, daB das Phanomen aus einer Abfolge von vier Bereichen 
besteht: (a) Gebiet der reinen Wiirmeleitung, (b) Mischgebiet, in dem im oberen Teil der Fltissigkeit 
Konvektion und im unteren Teil Warmeleitung vorherrscht, (c) Konvektionsgebiet und schlieBlich (d), das 
letzte, sogenannte “shrinking solid”-Gebiet. Fiir die ersten drei Bereiche liefert die Skalierungs-Theorie 
eine zeitabhlngige Nusselt-Zahl, die ahnliche Eigenschaften wie die van der Waals-Isothermen aufweist 
und insbesondere ein eindeutiges Minimum der Nu-Zahl im Bereich Ra II4 bei der Zeit Ste Fo im Bereich 
von Ru-“~ zeigt. Dabei ist Ste die Stefan-Zahl der iiberhitzten Fliissigkeit und Fo die mit H gebildete 
Fourier-Zahl. Die korrespondierende mittlere Lage der Schmelzfront hat einen Wendepunkt zu einer Zeit 
bei Ru-“~. Die Theorie zeigt weiter, da0 im vierten Bereich die festen Bestandteile m einem Ste 15‘0 
Zeitintervall von &-‘I4 verschwinden. Den zweiten Teil der Arbeit bilden numerische Experimente, die 
die im ersten Teil aufgestellte Theorie verifizieren sollen. Die numerischen Simulationen beruhen auf der 
Nlherungsmethode der quasistationlren Front und der Annahme quasistationlrer natiirlicher Konvek- 
tion. Die hier durchgefiihrten Parameterstudien decken einen Bereich 0 < Ra < lOa, 0 < Ste Fo < 0,2; 
Pr = 50 und H/L = 1 ab, wobei L die horizontale Abmessung des Hohlraums und a die auf H bezogene 
Rayleigh-Zahl ist. Es werden geschlossene Korrelationen fur die Nusselt-Zahl und die Orts-Zeit-Funktion 

der Schmelzfront durch Kombination der theoretischen und numerischen Ergebnisse aufgestellt. 

TEOPHJI IIOJIOBHR I-IPOHECCOB IIJIABJIEHIDI I-IPH ECTECTBEHHOH KOHBEKHHR B 
3AMKHYTOti I-IOJIOCTH 

Auuorannn-Onpenenenht nan6onee xapaz’repabre BeJmSrinbr u pexorhfbi nnaBJreHm4 c yYeToM ecTeCT- 

BeHHojiKoHBeKusia B 3ab4KHyToknonocru,~arpeBaehfofi c60xy.B nepnofi qacr~mxnenosamin ncnonb- 
3yeTCX MeTOA TeOpHH noAo6an ‘iT06bI llOKa3aTb, ~0 snneHHe nnannetnis BKnwiaeT w~b~pe 

lV,CneAOBaTenbHO IIpOXOAKIIGiX pexatwhta: (a) Te"JIOIIpOBOAHOCTb, (6) CMeIlIaHIibdi pC2KtaM, B KOTOpOM 
AJIK BepXHeii 'IaCTH ~&iAKOCTKCnpaBeAJISiBbI 3aKOHbl KOHBeKTHBHOrO TenJIoo6Meaa,a IUDKHefi-3aKOHbl 

TennonponoaHocrw, (B) K~HA~KTHBH& TeIIJIOO6MeIi A, HaKoHeu, (r) nocne~iffi pencn~ nnu~u "ycaA~a 

TBepAOrO Tena". &JS ITepBEdX TpeX pE%HMOB C lIOM0IUbIO TeOp#iH IIOAO6HK WACKWaHa 3aBHCUMOCTb 

'WiCna HyCC2nbTa OT BpeMeHH,K0~0pa,I IIOAO6Ha EisoTephie BaH Aep Baanbca,B 'I~CTHOCTSI,MHHWM~M 

HyCCenbTa nopnnea Ra’14 COOTBeTCTByeT BpeMeHH Ste Fo IIopKAKa Ra-“2, me %Z-WCnO CTe+aHa 

A~IR~IeperpeTOii x&iA~ocTa H Fo-wcno @ypbe,OCHoBaHIioeHa H. COOTBeTCTByKWeecpeAH~ nonoXe- 
tine +pOHTa nnaBneHEifl UMeeT ~0qKy neperu6a IIpw BpeMeHA IIopnAKa Ra-I”. Teopnn nOKa3bIBaeT 

AilJIee,'iTO B YeTBepTOM pewIIhfe TBepAOe Ten0 BCSe3aeT 38 Bp&fff IIOpSIAKa Ra-“4. BO BTOpOii YaCTW 

pa6oTbI IIpeACTaBneHbI WiCneHHbIe paCqeTbI,IJenb KOTOpbIX npOBepHTb IIpaBHnbHOCTb TeOpHH,C03AiU+ 

HOti B OepBOfi SaCTU. %iCJIUIHOe MOAenHpOBaHHe OCHOBaHO Ha npw6mixeaaa KBa3HCTaIUiOHapHOrO 

@pOHTa H IIpeAIIOnOXCeHliE 0 KBa3HflaWiOHapHOii eCTeCTBeHHOii KOHBeKAWH. MOAenHpOBsuI&Se BbIIIOn- 

HeHo B cnenyromw o6nacrrx napahwrpoB: 0 S Ra 5 lo*, 0 < Ste Fo < O,2, Pr = 50 B H/L = 1, me 
L-rOpn30IiTanbHbIiipa3MepnOnOcTu,a Ra-+acnoP3nen, OCHoBaHHoeHa H. B pesynbTaTeo6aeAuHe- 
H&ill TeOpeTFIeCKEiX B WiCneHHbIXpe3ynbTaTOB IIOny'IeHbI COOTHOUIeHAR,6nU3KUe II0 @OpMe, AJI$l3aBII- 


